OK
Polymer Additives
Industry News

New Photoactivation Mechanism Produces Polymer from Pure Monomers

Published on 2020-09-17. Edited By : SpecialChem

A team of researchers from North Carolina State University has demonstrated a way to use low-energy, visible light to produce polymer gel objects from pure monomer solutions. The work gives a potential solution to current challenges in producing these materials and also sheds further light on the ways in which low energy photons can combine to produce high energy excited states.

New Photoactivation Mechanism Produces Polymer from Pure Monomers

Polymer Production Using Lower Energy Yellow or Green Light


Polymers can be produced via a process called free radical polymerization, in which a monomer solution is exposed to ultraviolet (UV) light. The high energy of UV light enables the reaction, forming the polymer. The advantages of this method include fewer chemical waste byproducts and less environmental impact.

However, this method has some drawbacks. The high energy UV light used in generating these polymers can also degrade plastics and is unsuitable for producing certain materials.

Felix N. Castellano, goodnight innovation distinguished chair of chemistry at NC State, had previously shown that it was possible to combine lower energy molecules’ excited states to achieve more potent excited states. In a new contribution, Castellano and his team applied a process – called homomolecular triplet-triplet annihilation – to polymer production, by using lower energy yellow or green light to create polymer gels.

Working Principle of the New Method


The team dissolved zinc(II) meso-tetraphenylporphyrin (ZnTPP) into two different pure monomers – trimethylolpropane triacrylate (TMPTA) and methyl acrylate (MA) – then exposed the solutions to yellow light. Energy from the light creates the homomolecular triplets in ZnTPP, and when those triplets combine, they create an extremely short-lived S2 excited state that has enough energy to power the polymerization process.

While triplets are really long lived in chemical terms – they live for milliseconds – the S2 excited state only lives for picoseconds, which is nine orders of magnitude less. One of the important facets of this work is demonstrating that if you have a pure liquid you can utilize this potent, short-lived excited state to facilitate important transformations. The neat liquid ensures that electrons are transferred efficiently,” Castellano says.

The team conducted spectroscopic analysis of the solution, establishing the existence of the S2 excited state in the presence of yellow and green light. They used ZnTPP because it allows to see light emission from two different excited states and could differentiate between lower energy S1 and higher energy S2 states. Polymer formation is a direct result of the S2 excited state, but they could also show that’s what happening spectroscopically.

The work appears online in Chem, and was funded through BioLEC, an Energy Frontier Research Center supported by the U.S. Department of Energy (DE-SC0019370).


Source: North Carolina State University
Back to Top